A Photoelectrochemical Study|of Polyacetylene, (CH)x

Toshihiro Yamase,* Hideo Harada, Tsuneo Ikawa, Sakuji Ikeda, and Hideki Shirakawa[†]

Research Laboratory of Resources Utilization, Tokyo Institute of Technology,

4259 Nagatsuta, Midori-ku, Yokohama 227

† Institute of Materials Science, University of Tsukuba, Sakura-mura, Ibaraki 305

(Received January 14, 1981)

Synopsis. The photoelectrochemical behavior of ptype semiconducting trans- $(CH)_x$ film in the presence of N,N'-dimethyl-4,4'-bipyridinium as the solution species is described. The spectral response of the photocurrent shows a mismatch with the absorption spectrum, and the quantum yield $(\approx 10^{-3})$ of the charge flow is extremely low. It is assumed that $(CH)_x$ film has a high trap density and that the lifetime of the photogenerated hole is limited by trapping and recombination in the space-charge region.

In recent years, there has been a considerable interest in the electrical and optical properties of polyacetylene, (CH)_x, film as a new class of semiconducting material. 1-6) A (CH)_x-sodium polysulfide solution photovoltaic cell has been fabricated as an active photoelectrode for a photoelectrochemical cell.7) Although Chen et al. mentioned that the $(CH)_x$ photocathode exhibited significant photoresponse with an open circuit voltage, $V_{\rm oe} \approx 0.3$ V, and a short circuit current, $I_{\rm se} \approx 40~\mu {\rm A/cm^2}$, under illumination of approximately 1 sun,⁷⁾ the photoresponse ($V_{oc} \approx 60 \text{ mV}$, $I_{sc} \approx 1$ $\mu A/\text{cm}^2)$ in our work was very low. These results suggest that, in order to use the (CH), as an active photoelectrode for a photoelectrochemical cell, it is of primary importance to characterize its general photoelectrochemical behavior before any modification experiments are performed. The studies reported here concern the basic photoelectrochemical properties of the $trans-(CH)_x$ film in the presence of N, N'-dimethyl-4,4'-bipyridinium (MV2+) as the solution species.

Experimental

The preparation of the trans-(CH) $_x$ film has been described elsewhere.⁸⁾ The film was about 0.1 mm thick. The conductivity of the film was found to be about 10^{-6} Ω^{-1} cm⁻¹, as determined by the standard four-probe van der Pauw technique.⁹⁾ The ohmic contact with a thin copper sheet was obtained by the use of Electrodag on the shiny side of the (CH) $_x$ film. The preparation of the (CH) $_x$ working electrode was done according to Chen's method.⁷⁾

Photocurrent measurements were performed under potentiostatic conditions with a home-made potentiostat.

The light source used in the study of the photoelectrochemical effect was a 100-W high-pressure mercury lamp with a glass filter (λ≤430 nm cut-off). A water filter with a 10-cm optical pathlength as a heat-absorbing filter was employed. Chemical actinometry for 436-nm-wavelength light, obtained by combination with a KL-43 filter, was carried out using the potassium ferrioxalate system. The measurement of the action spectrum of the photocurrent was done by the lock-in (NF Model LI-574) technique using a modulation of the light beam with 8 Hz. As a light source in this case, a Xe 500-W lamp was used, while a grating monochrometer (Nikon G-250) was employed for the wavelength selection.

Reagent-grade chemicals were used without further purification. All the solutions were deoxygenated for at least

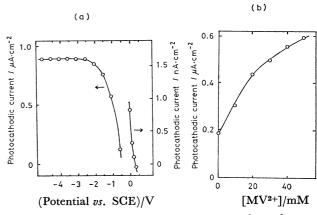


Fig. 1. (a) Steady-state photocurrent vs. electrode potential for 20 mM MV²⁺ in 1 M KCl (pH 5) at trans-(CH)_x electrode; (b) Steady-state photocurrent as a function of concentration of MV²⁺ (1 M KCl, pH 5, $U_{\text{SCE}} = -1.0 \text{ V}$).

30 min with purified nitrogen before each experiment. All the experiments were carried out with the solution under nitrogen without stirring.

Results and Discussion

Cyclic-voltammetric curve revealed that the (CH)_x film did not react with MV2+ in the dark at all. Figures 1(a) and (b) show the steady-state photocurrent-voltage characteristic and the dependence of the signal on the MV²⁺ concentration respectively. The results can be qualitatively explained in terms of the p-type semiconducting properties of the $(CH)_x$ film. The cathodic photocurrent indicates that MV^{2+} acts as a primary acceptor of the electron as the minority carrier ejected from the (CH)_x into the solution and can be attributed to the reduction of MV2+ to the purple MV·+, as evidenced by the blue-purple color streaming from the (CH)_x film surface at $U_{\text{SCE}} \leq -1.5 \text{ V}$. This fact suggests that the lower edge of the (CH), conduction band is positioned at energies above the standard redox potential (-0.7 V vs. SCE) of MV²⁺/ MV·+.10) Figure 1(b) shows the observation of the signal in the absence of MV²⁺ as well. The electron acceptor in this case remains unidentified, but dissolved oxygen gas as an impurity is a possible candidate, because O2 can mediate the transfer of the conduction-band electron across the $(CH)_x$ film-solution interface. The onset potential $(U_{\text{SCE}} \approx 0.4 \text{ V})$ of the photocurrent, which approximately corresponded to the flat-band potential for the (CH)_x electrode, was almost independent of the solution pH (1-13), and the signal decreased with the solution acidity when $U_{\mathtt{SCE}}$ was kept constant. When a solution containing sodium polysulfide (20 mM as Na₂S₂) and 1 M (mol dm⁻³) KCl at pH 11.6 was used,⁷⁾ the photo-

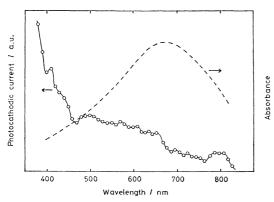


Fig. 2. Spectral response (in arbitrary units) of trans-(CH)_x electrode in 20 mM MV²⁺+1 M KCl aqueous solution (pH 5).

Dashed curve indicates absorption spectrum of trans-(CH)_x with about I μ m in thickness.

current was lower ($\approx 0.27 \,\mu\text{A/cm}^2$ at $U_{\text{SCE}} = -1.0 \,\text{V}$) than that of the 20 mM MV²⁺ system at pH 5 ($\approx 0.45 \,\mu\text{A/cm}^2$ at $U_{\text{SCE}} = -1.0 \,\text{V}$). This lower photocurrent may be mainly caused by an absorbance of the polysulfide solution used, and we may conclude that, in the polysulfide electrolyte, (CH)_x does not exhibit the significant photoresponse previously reported.⁷⁾

In Figure 2 the spectral response of the (CH)_r electrode is shown. The data on the vertical axis were obtained by dividing the photocurrent at a certain wavelength by the number of photons incident on the electrode. It can be seen that the spectral response of the photocurrent shows a mismatch with the absorption spectrum of the $(CH)_x$ film, which exhibits an absorption maximum at 670 nm.¹¹⁾ Similar behavior has been observed for the solid-state (CH)_r Schottky junction.¹²⁾ The threshold of the photocurrent response is observed at about 830 nm (≈1.5 eV), in agreement with the direct-band gap calculated from the optical studies of the $(CH)_x$ film.¹⁾ The anticorrelation between the action and the absorption spectrum indicates that the light absorbed on the front suface of the (CH)_x film is not effective in creating free-charge carriers. In effect, most holes generated on the front surface are not long-lived enough to diffuse into the space-charge layer, while holes generated within the bulk have a finite probability of transiting the space-charge layer to be registered as carriers in the external circuit. The rate of charge generation at a certain distance, x, from the front surface is proportional to $\exp(-kx)$, where k is the absorption coefficient of the $(CH)_r$ film (for example, $k_{670} \approx 2 \times 10^5$ cm^{-1 1)}). Detailed studies of the photovoltaic response for p-(CH)_x: n-CdS heterojunction have implied the existence of a meta-stable trapping state 0.9 eV below the conduction band of the (CH)_x film.⁶⁾ Therefore, the anticorrelation may be explained by assuming that the (CH)_x film has an excessively high trap density; if the penetration depth of the light ($\lambda \le 600$ nm) is large, the trapping of the photogenerated holes may be insignificant compared to the case of about a 670 nm-wavelength light corresponding to the absorption maximum of the (CH)_r film. The quantum yield of the charge flow under

the 436-nm-light irradiation was extremely low, being 1×10^{-3} at $U_{\rm SCE}\!=\!-1.0~{
m V}$ in the $20~{
m mM}~{
m MV^{2+}}$ +1M KCl aqueous solution (pH 5). Furthermore, the light-intensity dependence of the photocurrent varied with the applied potential; the light-intensity exponent for the photocurrent was less than unity and increased from 0.8 to 0.9 as - $U_{\rm SCE}$ increased from 0.5 to 3.0 V. These results may be related to the recombination or trapping of the photogenerated holes in the bulk of the (CH)_x film, which arises from the high trap density and which well limits the photocurrent to a significant level, if we consider that an increase in the electric field in the space-charge layer would cause the photogenerated holes to have an increasing chance of transiting the space-charge layer before being trapped. 13)

References

- 1) C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, *Phys. Rev. Lett.*, **39**, 1098 (1977).
- C. K. Chiang, Y. W. Park, A. J. Heeger, H. Shirakawa,
 E. J. Louis, and A. G. MacDiarmid, J. Chem. Phys., 69, 5098 (1978).
- 3) C. R. Fincher, Jr., M. Ozaki, M. Tanaka, D. Peebles, L. Lauchlan, A. J. Heeger, and A. G. MacDiarmid, *Phys. Rev. B*, **20**, 1589 (1979).
- 4) Y. W. Park, A. Denestein, C. K. Chiang, A. J. Heeger, and A. G. MacDiarmid, *Solid State Commun.*, 29, 747 (1979).
- 5) M. Ozaki, D. L. Peebles, B. R. Weinberger, C. K. Chiang, S. C. Gau, A. J. Heeger, and A. G. MacDiarmid, *Appl. Phys. Lett.*, **35**, 83 (1979).
- 6) M. Ozaki, D. L. Peebles, B. R. Weinberger, A. J. Heeger, and A. G. MacDiarmid, J. Appl. Phys., 51, 4252 (1980).
- 7) S. N. Chen, A. J. Heeger, Z. Kiss, A. G. MacDiarmid, S. C. Gau, and D. L. Peebles, *Appl. Phys. Lett.*, **36**, 96 (1980).
- 8) T. Ito, H. Shirakawa, and S. Ikeda, *J. Polym. Sci.*, *Polym. Chem. Ed.*, **12**, 11 (1974).
- 9) L. J. van der Pauw, Philips Tech. Rev., 20, 220 (1958);
 J. Lange, J. Appl. Phys., 35, 2659 (1964).
- 10) S. Hunig, J. Gross, and W. Schenk, Justus Liebigs Ann. Chem., 1, 324 (1973).
- 11) H. Shirakawa, T. Ito, and S. Ikeda, *Polym. J.*, 4, 460 (1973).
- 12) T. Tani, P. M. Grant, W. D. Gill, G. B. Street, and T. C. Clarke, Solid State Commun., 33, 499 (1980).
- 13) The AsF₅-doped trans-(CH)_x film with $8.4 \times 10^{-3} \Omega^{-1}$ cm⁻¹ exhibited 5×10^{16} and 2.5×10^{18} cm⁻³ as the ionized acceptor concentration (N_A) and the trap density (N_T) , respectively.¹⁴⁾ Accordingly, it may be reasonable to assume $N_A \approx 10^{15} \text{ cm}^{-3}$ for the present $(CH)_x$ film with 10^{-6} Ω^{-1} cm⁻¹. Then, about 10^4 Å as the space-charge layer width under the band bending of about 1 eV can be calculated, when $\varepsilon \approx 10$ is taken as the dielectric constant. In this case, most of the absorption maximum-photons ($k_{\rm 670}\!\approx$ 2×10^5 cm⁻¹) incident on the $(CH)_x$ film would be absorbed within 103 Å of the front surface, and most of the photogenerated holes would be not long-lived enough to transit the space-charge layer with a 104 Å width, due to the trapping by the high-trap density (probably $N_T > 2.5 \times$ 1018 cm⁻³). This may lead to the absence of any parallel effect for the photocurrent signal, as is shown in Fig. 2.
- 14) H. Shirakawa and T. Tani, Kotai Butsuri, 14, 435 (1979).